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Abstract. One of the central questions of biology is how complex bio-
logical systems can continue functioning in the presence of perturba-
tions, damage, and mutational insults. This paper investigates evolution
of spiking neural networks, consisting of adaptive exponential neurons.
The networks are encoded in linear genomes in a manner inspired by
genetic networks. The networks control a simple animat, with two sen-
sors and two actuators, searching for targets in a simple environment.
The results show that the presence of noise on the membrane voltage
during evolution allows for evolution of efficient control and robustness
to perturbations to the value of the neural parameters of neurons.

Keywords: Spiking neural networks · Adaptive exponential integrate-
and-fire model · Genetic algorithm · Robustness to noise · Robustness
to damage

1 Introduction

One of the central mysteries of biology is the enormous robustness of complex
biological systems to perturbations [7]. This robustness is paradoxical because
large complexity suggests fragility. And yet biological systems are robust not
only to the fluctuations of the external environment, malfunctions of internal
parts, but also the steady bombardment, over generations, of genetic distur-
bances (mutations) resulting in slight changes in structure of these systems. For
example, biological genetic networks are robust to transcriptional noise, point
mutations, deletions and duplications of genes. Perhaps the most complex sys-
tems known, biological neural networks, are robust to changes at several scales—
developmental variability from one generation to the next, influencing the
number of cells and theirs connectivity, fluctuations over individual life in the
number of cells resulting from their death of cells and formation of new ones,
and at a scale smaller still—destruction and formation of synapses, changes of
the neurophysiological properties of individual neurons, etc.
c© Springer International Publishing AG 2016
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As the components of artificial computational systems get smaller, these sys-
tems become more difficult to build (resulting in the variability of structure)
and more unreliable (with more noise and more fragility of each part). Hence
the interest in building artificial systems inspired by biology, such as artificial
genetic networks and artificial neural networks, which promise large computa-
tional resources, low power consumption, and robustness to silicon mismatch
(for example [6]).

In this paper I investigate the interplay between the robustness to noise and
to other perturbations in evolved artificial spiking neural networks. The networks
are evolved to control the behavior of a simple animat, with and without the
noise on membrane potential of neurons. I then analyse the robustness of these
networks to changes in parameters of neurons and the functioning of the animats’
actuators.

The model of evolution of networks used in this paper was built originally
for artificial genetic networks. We called this approach a ‘mixed paradigm’ [8,9],
because the encoding in the artificial genomes is inspired by the encoding of
biological genetic networks, but the functioning of the networks is inspired by the
networks of biological neurons in the brain. In biology, the encoding of the neural
structures in the genome is much more indirect, with the number of neurons
in large mammalian brains vastly larger than the number of genes. However,
the computational task faced by the networks investigated here is quite simple,
consisting of directional movement toward target of an animat with two sensors
and two actuators, so a simple encoding is more than sufficient.

2 Model

2.1 Evolving Spiking Neural Networks

The network model used in this paper does not restrict the number of nodes
or connections in the networks (more precisely, the restrictions imposed by the
limited computer memory are never reached in practice; however, the task con-
sidered here does not require large networks). Each internal node is encoded in
the genome as a series of cis genetic elements followed by a series of trans ele-
ments (Fig. 1). Each element in the genome has several fields (four in the version
of the model used in this paper): the type (cis, trans, and input or output), sign,
and two coordinates. Three types of connections are allowed between the nodes:
input-cis—encoded by one input and one cis element—and, similarly, trans-cis,
and trans-output. The signs determine if a particular connection is inhibitory
(when the signs of two elements are different) or excitatory (when the signs are
the same).

A connection is formed if the coordinates of two elements are such that
the Euclidean distance between the corresponding points in an abstract
2-dimensional space is below a predefined threshold (5.0). The smaller the dis-
tance, the higher the weight of the connection (using the positive part of the
function 10−2d

d+1 , where d is the distance between the elements). If more than
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one connection is formed between any two nodes, the weights are added, giv-
ing in the end either a positive synaptic weight (an excitatory connection) or
a negative one (an inhibitory connection). For example, to calculate the weight
between the second sensory neuron in the network for the animat in Figs. 1 and
3 (marked as S) to the first interneuron (which has 5 cis elements), we need
to add the weights coming from the interactions between input-cis pairs (3, 4),
(3, 5), and (3, 8), the other pairs have distances higher than 5.0. This gives the
weight −0.16 − 3.07 + 2.04 = −1.19.

Input nodes have one state variable, determined by the sensors on the ani-
mat; internal and output nodes have four state variables: membrane potential
v, adaptation current w, excitatory conductance gE , and inhibitory conductance
gI . They are governed by four differential equations, according to the adaptive
exponential integrate-and-fire model of spiking neurons (AdEx, EIF) [2,5]:

dv

dt
=

gL(EL − v) + gLδe
v−VT

δ + w + gE(EE − v) + gI(EI − v) + Ioffset
C

(1)

dw

dt
=

a(V − EL) − w

τw
(2)

gE
dt

=
−gE
τE

(3)

gI
dt

=
−gI
τI

(4)

Euler integration was used, with 1-ms steps. The exponential term gives an
upswing of the action potential (when the input current, gE(EE−v)+gI(EI−v)+
Ioffset, drives the membrane potential beyond VT ), which is stopped when the
potential reaches 0 mV, and the downswing (in the next simulation step) results
from the reset condition: v is given the value of Vr, and w is incremented by b.
If the neuron has a negative (positive) connection, the inhibitory (excitatory)
conductance of the postsynaptic neuron is incremented by the synaptic gain
(0.003µS) multiplied by the weight.

The values of the parameters used in this paper give tonic spiking when
the input current is constant (above about 0.2204 nA): leak conductance gL =
0.01µS, rest potential EL = −70 mV, slope factor δ = 2 mV, threshold poten-
tial VT = −50 mV, excitatory reversal potential EE = 0mV , inhibitory reversal
potential EI = −70mV , offset current Ioffset = 0 for internal neurons and
Ioffset = 0.5 nA for output nodes, membrane capacitance C = 0.2 nF, adap-
tation coupling a = 0.002µS, adaptation time constant τw = 30 ms, synaptic
time constants tauE = tauI = 5ms, reset voltage V = −58 mV, and adaptation
increment b = 0 nA.

2.2 Animats and Their Environment

The animat has two sensors and two actuators. The state of the sensors depends
on the amount of the signal received from the targets (which can be seen as,
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Fig. 1. The genome and the animat. The genome of animat shown in Fig. 3 is shown
as an example (left); it consists of two sets of a series of cis (dark green) and trans
(pink) elements, thus encoding two internal nodes. The four elements on top encode
the outputs (green) and inputs (gray). The animat (right) has two sensors in front
(light circles) and two actuators behind them (the direction of the thrust is shown by
black straight lines); the trace of the movement for the first 500 ms is indicated by the
curvy line; as the animat approaches the target on its left, the right actuator is slightly
more active. (Color figure online)

for example, light intensity or scent [3]). The signal coming from a given target
decreases with the Euclidean distance (dEuc) from this target (as 1

1+0.2dEuc
), and

reaches maximum (1.0) at zero distance. The signal coming from all the targets
is summed. When a target is reached, it disappears, and the signal field changes
instantaneously. The activation of the sensor (SL and SR, Fig. 1) is equal to the
value of signal at the sensor’s location.

The sensory information is provided to the neurons that connect to the
input nodes. The state of one of these nodes (S, for sum) depends on the aver-
age activation of both sensors on the animat ( 2

1+e−γavg(SR+SL) − 1), and the
state of the other (D, for difference)—on the difference in sensors’ activation
( 1
1+e−γdif(SR−SL) ). In other words, the state of the node D is 0.5 when the acti-

vation of the left and right sensor on the animat is the same, and it decreases
towards 0 (or increases towards 1) when the right-left difference decreases (or
increases). The steepness of the sigmoid functions is set to amplify small dif-
ferences or to allow for a dynamic response even when the animat is close to
several targets (γdif = 10, γavg = 0.5). At each simulation step, the state of
each input node is determined, rounded to the largest previous hundredth (to
simulate sensors with limited precision), and this value, multiplied by the synap-
tic gain and the weight of the connection to a postsynaptic internal neuron to
which the input node connects, is added to the excitatory (or inhibitory, if the
weight is negative) conductance of this postsynaptic neuron.

The thrust forces (Fig. 1) generated by the actuators are proportional to
number of spikes of the output neurons in the previous 120 ms. The directions of
the forces are such that when the activations of the actuators differ, the animat
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turns, but even when only one actuator is active, the animat moves in a loop
rather than turning on the spot. When both previously active actuators become
inactive, the motion continues due to inertia until the animat is brought to a stop
by drag (proportional to velocity). This drag also imposes a maximum velocity
possible.

2.3 Genetic Algorithm

Each evolutionary run consisted of 250 generations of a genetic algorithm with
a constant population size of 300 individuals, with binary tournament selection
(draw two, keep the better one), and elitism (10 individuals). The genomes of
the animats in the initial population had, apart from two input and two output
elements, three series of cis and trans elements (the number of cis and trans in
each series was drawn from the normal distribution with mean and standard
deviation both equal to 3.0, rounded to the largest smaller integer; all numbers
below 1.0 were binned to 1). Coordinates in genetic elements were determined by
drawing a random direction and a random distance from (0, 0) using a uniform
distribution. Genetic operators were changes of coordinates (with probability
0.005 per gene; coordinate change causes the point corresponding to the element
to move in the abstract 2-dimensional space by a distance drawn from a normal
distribution), deletions, and duplications of individual elements. The probabili-
ties of deletions and duplications were 0.00375 and 0.0025, respectively, creating
a mutational pressure for short genomes.

The genetic algorithm aimed to minimize the average value of the fitness
function over 5 random maps with 20 targets each, ffit = 1 − ctargets

20 ), where
ctargets is the amount of targets reached. The animats were allowed to move
for 24000 ms during evolution, but when analysing the champions after each
run (and testing robustness), the fitness was re-evaluated by averaging for 1000
random maps with 20 targets and 48000 ms for each map.

Since the output nodes spike at a constant frequency without input from
internal neurons (because of the positive offset current), most animats in the
initial population moved, although not directionally.

3 Results and Discussion

Although the foraging task considered here is quite simple, corresponding to
Braitenberg vehicle 2b [1], it is not completely trivial. This is because the number
of targets gets smaller with each find, changing the activation of the sensors on
the animat, and the control has to be tuned to the physics of the environment
(the drag forces) and the animat (the thrust of the actuators). In fact, only about
6 % of the independent runs resulted in networks that allowed the animat to find
nearly all the targets on any map (fitness function below 0.1, meaning that at
most about 2 targets out of 20 were left on average). Only these champions
were analysed further (9 from 159 independent runs conducted with Gaussian
noise on the membrane potential with standard deviation 5 mV; 13 from 209
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Fig. 2. The behavior of the best animat in the cohort of 13 champions evolved without
noise. See text for details.
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Fig. 3. The behavior of the worst animat in cohort of 13 champions evolved without
noise. See text for details.
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Fig. 4. The behavior of the best animat in the cohort of 9 champions evolved with
noise. See text for details.

0 100 200 300 400 500

−
60

−
40

−
20

0

time [ms]

m
em

br
an

e 
vo

lta
ge

 [m
V

]

0 100 200 300 400 500

−
60

−
40

−
20

0

time [ms]

m
em

br
an

e 
vo

lta
ge

 [m
V

]

0 100 200 300 400 500

−
80

−
60

−
40

−
20

0

time [ms]

m
em

br
an

e 
vo

lta
ge

 [m
V

]

Fig. 5. The behavior of the worst animat in the cohort of 9 champions evolved with
noise. See text for details.
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Table 1. Comparison of the robustness of the 9 champions evolved with noise on
voltage and 13 evolved without. The fitness function values (all the columns but the
last 2) have been obtained for 1000 random maps and 48000 ms; the last 2 columns
indicate the number of cis and the trans elements in the genomes. The values of the
fitness function below 0.25 are highlighted in red, the values below 0.33 in green, and
below 0.40 in grey. The last row shows the results of the comparison between 9 and 13
values in each column using the Anderson-Darling k-samples test, with values below
0.05 highlighted in red. See text for more details.

independent runs without noise, Table 1; all the re-evaluations shown in the
table were performed using the noise levels at which the networks were evolved).

The results clearly indicate that networks evolved with noise were much
more robust to other perturbations (Table 1). Nearly all of such networks (with
the exception of one) allowed to find at least two thirds of the targets when the
activity of one of the actuators was increased by 15 %, and the activity of the
other actuator was decreased by 15 % (Table 1, column 2 and 3). Some animats
performed better when the left actuator had higher and the right lower activity;
for the other animats the inverse situation resulted in better performance, so
Table 1 shows the results for the better scenario in column 2 and for the worse
scenario in column 3. The networks evolved without noise did not fare well in the
worse scenario (see Table 1 for p-values of all the statistical tests; all tests were
done using the Anderson-Darling k-sample test; I also used, when appropriate,
the two-sample Kolmogorov-Smirnov test, the p-values for the two tests were
very close in value).

Similarly, most of networks evolved with noise performed well when the inter-
nal neurons were given either positive or negative offset current of 0.2 nA (instead
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of 0; Table 1; column 4 and 5), when the offset current for the output nodes was
decreased or increased by 0.3 nA (from 0.5 to 0.2 or 0.8, respectively; column 5
and 6), when synaptic gain was increased or decreased by 0.0005µS (from 0.003
to 0.0025 or 0.0035; column 7 and 8), reset voltage decreased or increased by
10 mV (from 58 to −68 or −48; column 9 and 10), or rest potential decreased or
increased by 30 mV (from 70 to −100 or −40; column 11 and 12). None of the
networks evolved without noise performed well in these scenarios.

Two networks evolved with noise were not affected much even by a change
from tonic spiking to tonic spiking with adaptation (by setting the adaptation
increment b = 0.1 nA), the fitness function changed in these two cases from 0.017
to 0.119 and from 0.035 to 0.089, and two other networks could perform even
with Gaussian noise with standard deviation 7 mV (the fitness function changed
from 0.015 to 0.227, and from 0.030 to 0.109), while only one network without
noise gave good behaviour with noise up to 2 mV (the fitness function changed
from 0.074 to 0.198).

In general, the networks evolved with noise were encoded by slightly longer
genomes than the networks evolved without noise (although all the networks in
Table 1 had 3 internal nodes, with the exception of the one in the last row, shown
in Figs. 1 and 3). This difference can be attributed mostly to a higher number
of cis elements in the genomes evolved with noise (Table 1; column 13 and 14).

The detailed analysis of the topology of the networks indicates that all net-
works have a neuron spiking with high frequency and inhibiting one of the actu-
ators (Figs. 2, 3, 4 and 5, the best and worst in each cohort is shown; the top
panels in all four figures show the voltage in the first 500 ms of the three, or two,
internal neurons; the order from left to right on the top corresponds to the order
from top to bottom in the graph on the bottom left panel of each figure, D is for
input node whose state corresponds to the difference in animat sensors, S is for
the node whose state corresponds to the sum/average of the sensors, R and L
indicate output nodes regulating right and left actuators, respectively, red edges
correspond to excitatory, and blue to inhibitory connections; the bottom right
shows the trajectory of the animat over 48000 ms).

For example, the network of the best animat in the cohort of 13 evolved
without noise (Fig. 2) this high-frequency neuron is internal neuron 3, the one
inhibiting stronger the left actuator. The network has also a self-sustaining loop
between neurons 1 and 3, a weaker loop between 2 and 3, the neuron 2 activates
itself very weakly, and neuron 1 inhibits itself strongly. The sustained activity of
neurons 2 and 3 results in a continued circular counterclockwise movement after
all the targets are reached (and the sensors are quiet); since the left actuator is
inhibited (by neuron 3), the animat turns to the left.

The small network in Fig. 3 is a less efficient controller; the trajectory shows
that three targets have been missed on this map (filled dark circles in the top
right). With small activation of the sensors, and driven mostly by self-sustained
spiking of both neurons (neuron 1 with higher frequency), the animat continues
to move with the left actuator more activated than the right, and will not reach
the targets if the simulation is continued.
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In contrast, the animat in Fig. 4, evolved with noise, reaches all the targets,
and—with no activation of the sensors—continues to move without any clear
pattern, driven by noise, and sustained activity of the network (with neuron 1
at the highest frequency, much higher than the spiking frequency of the other
neurons, but with neuron 3 having the most complex spiking pattern, with peri-
ods of activity separated by relative quiescence, apparent also in the first 500 ms,
Fig. 4 top). Note that the noise prevents the animat to reach the target as pre-
cisely as is possible for the animats evolved and acting without noise (most
targets are reached after an approach along a circular local trajectory).

The same is true for the worst animat in the cohort of 9 evolved with noise.
This animat is relatively less efficient than the best one, but on this map it
manages to collect all the missing 3 targets when the simulation is continued
beyond 48000 ms shown (and used to reevaluate fitness); after all the targets are
collected, the sustained activity of all neurons (with the highest frequency of
neuron 3, and complex spiking pattern of neuron 2) continues.

4 Conclusion and Future Work

The main conclusion is that both an efficient control and robustness to pertur-
bations to the value of the parameters of neurons can be evolved in the presence
of noise, similarly to our previous results showing that robustness to noise in
evolving genetic networks promotes robustness to damage [4]. The noise used
in this paper was on one of the state variables of the spiking neural network; it
will be interesting to see if other models of noise and perturbations (for exam-
ple, relevant to neuromorphic hardware [6] will give similar results. Importantly,
the networks in the model used here were encoded in an artificial genome in
a way that does not limit in principle, and allows the evolutionary process to
vary, the number of nodes and connections in the network. It remains to be seen
if the evolution for more complex tasks and behaviors, possibly requiring more
complex networks, is possible in this system.
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